Airbus and Boeing are both planning to hit the marketplace with completely new narrobodied aircraft in the mid to late 2030s, but what will they look like? Will they have pilots?
Nothing is set in stone, but it appears most likely that airframes will still be variants of the wing-and-tube format. And, at present, power unit technology is still predicted to be hydrocarbon-fuelled, but using 100% sustainable aviation fuel (SAF) at service entry, driving higher-bypass rotors, whether ducted or unducted, with a promised 20%-30% increase in fuel efficiency. Both manufacturers still promise net-zero emissions by 2050.

Airbus’ NGSA (Next Generation Single Aisle) aircraft is expected to feature long, slender wings with folding wingtips (above), whereas Boeing, working with NASA, is trialling the “transonic truss-braced wing” (see below), also with a very high aspect ratio and folding wingtips

Surprisingly, no-one is talking specifically about artificial intelligence (AI). That may be because, by then, it will be impossible to tell, in integrated aircraft management systems, where AI ends and passive software begins. Meanwhile Airbus and Boeing both say they plan to keep pilots “in the loop”, and in an executive role. At this point a two-pilot crew is the model they are working with, but how long that will remain the status quo is not clear.
France-based Thales, which supplies the integrated modular avionics on the Airbus A320NEO, sees the NGSA offering the flightcrew a high degree of integral assistance.
“That aircraft will incorporate a lot more help for the pilots through automation, or recommendation, so they are assisted at any moment of the flight – whether it is a normal phase or if there are issues,” according to Yannick Assouad, executive VP of the avionics division. Flight management systems will assist pilot decision-making, going further than today’s Airbus Electronic Centralised Aircraft Monitor (ECAM) system or Boeing’s Engine Indicating and Crew Alerting System (EICAS), by proposing solutions with supporting information, but leaving the decision to the pilots.
If there is a difference between the two manufacturers’ approaches to future flight deck systems human/machine interface, it is subtle. Boeing emphasises pilot-assist technologies designed to keep the pilot central while improving training, and “human-machine teaming”, whereas Airbus focuses on automation and autonomy to reduce workload and improve safety through use of assistance systems. Airbus talks of “making the aircraft the pilot’s smart assistant”, one that can anticipate and act.
Technology advances include more efficient, higher bypass engines, including open fan designs; long, high aspect-ratio foldable wings enabling significant aerodynamic efficiency gains while maintaining manoeuvrability during taxiing and docking at high density airports; also, next-generation batteries to enable hybrid architectures where electricity is increasingly used to support propulsive and non-propulsive functions aboard the aircraft, and increased use of advanced lightweight materials and integrated systems.