Shoreham and the future of air shows

No person or organisation associated with the 2015 Shoreham flying display accident escaped criticism – implied or actual – in the Air Accident Investigation Branch’s final report.

When the aircraft that later crashed, the Hawker Hunter T7, took off from its North Weald, Essex base heading for Shoreham to fly the display, it had several time-expired or unserviceable components in it. In retrospect the AAIB report says it was not in compliance with its permit to fly, yet none of these faulty components caused the accident.

The Flying Display Director hired to manage show safety was fully qualified in terms of knowledge, experience and expertise to oversee all aspects of the flying display, but the report implies there were some things – like the exact display routine the Hunter was to fly – he should have risk-assessed manoeuvre by manoeuvre. Yet even if he had, the crash might still have happened.

The Hunter’s pilot was fully qualified in terms of experience, training, flying recency and medical fitness to carry out the display he had planned, but on the day he got one of the aerobatic manoeuvres badly wrong, making mistakes that are difficult to understand in somebody so experienced.

The mistakes meant that he himself was seriously injured when thrown clear of the aircraft on impact with the A27 highway next to the airfield, but 11 people on the road were killed.

By flying a similar Hunter through the same manoeuvres, the AAIB has determined that the pilot could not have pulled the aircraft out of his “bent loop” without hitting the ground once he had passed the apex too low and failed, at that point, to carry out an “escape manoeuvre” by rolling the aircraft upright.

If he had used his ejection seat during the high speed descent from the loop it would not have saved him, and the pilotless aircraft would have continued to impact with the ground, possibly in much the same place. The only way the pilot could have prevented killing the people on the A27, says the report, was to crash the aircraft into nearby fields, but during the last second or so he probably still hoped he could avoid harm to road-users by pulling up in time.

Why was he too low at the loop’s apex?

He should have entered the loop from a 500ft base, but he started at about 185ft. The height of the top of a loop compared with the entry height is a product of speed and engine power at entry. The aircraft should have entered at a minimum 350kt with full power selected, but the Hunter entered at 310kt with less than full power until well into the pull-up. The pilot should have aimed for a 4,000ft apex with 150kt indicated airspeed over the top, but in fact it got to less than 3,000ft with 105kt.

Unless the pilot recognised the lack of energy at that point and carried out the rolling escape manoeuvre, he and the aircraft were doomed.

Why a pilot with so much experience of teaching, let alone flying, aerobatic manoeuvres failed to heed these indicators that the loop was going wrong may never be known, because trauma has obliterated the details of the fatal flight from the pilot’s memory, according to the report.

Air shows involve risk. A study by the AAIB has recently quantified that risk, and my blog a year ago describes the findings in detail.

The final Shoreham report confirms the impressions given by the earlier AAIB bulletins on the subject. Because no-one in an on-site air display audience in UK has been killed since the early 1950s, such success appears to have led to complacency.

Not rampant complacency, but a relaxed belief that all the people involved are experts who know what they are doing, so they don’t need to be given the third degree before a show.

The sign that not all was well was the number of serious air display accidents, mostly fatal, that occurred just outside the area controlled by the display organisers – just like the Shoreham Hunter crash.

The AAIB found that 65% of all air show accidents came into that category, but almost always the only person harmed was the pilot. So nobody, including the CAA, raised the alarm, until now.

Meanwhile aerodromes used for decades as air show venues have suffered encroachment at their boundaries by expanding residential and industrial development. This affects the profiles aircraft are allowed to fly during a display, and flight display directors are bound to take this into account.

No longer are display lines, and entry and exit profiles dependent purely on where the display audience “crowd line” is, they have to take into account what each aircraft would have to do in the event of a technical or operational mishap during the display to avoid crashing into a nearby populated zone.

These are considerations that will affect air shows in the future. If a flying display stops being exciting, it might as well give up. Or go somewhere else more rural.

Coastal air displays will survive, because the escape route for aircraft in trouble is obvious.

The best example of the conundrum air show organisers face is what has happened to the traditional Red Arrows display at the biennial Farnborough International Air Show. When the Reds reviewed their Farnborough routine in detail following the tightened guidelines published in the early Shoreham bulletins, they found they had to curtail their display considerably.

In a statement following the release of the Shoreham final report, the CAA says: “We are fully committed to ensuring that all air shows take place safely, for the six million people who attend them each year in the UK and for the communities in which they take place.”

Let’s hope the CAA means what it says.

Fear of drones

It looks as if the 17 April “drone strike” on a British Airways aircraft on approach to Heathrow airport may not have been a collision with a drone after all. Maybe just a wind-tossed plastic bag – the investigation is still in progress.

In an aircraft travelling at about 150kt (170mph/275km/h) on final approach, small objects can suddenly appear and flash past. At that point the pilots are concentrating on monitoring the aircraft’s performance and aiming it at the runway. So it’s easy for a pilot to misidentify whatever the object is.

But does that mean we don’t need to worry about drones?

There some very simple rules about how you may operate a drone, so the relevant question is whether people will obey the rules – or even read them in the first place.

Drones are getting popular among ordinary people, mainly for airborne video recording or still photography. First the selfie, then the selfie-stick, now the airborne selfie?

Lads mags are full of enthusiastic advice for gadget-crazy young men. Some lads will be given a drone as a birthday present. If they are given one, will they read the operating instructions when they’ve opened the pack, let alone the legal restrictions on their use?

Some won’t, but does that mean they will inevitably operate their drone in such a way as to endanger aircraft? The law of averages says that one day someone will – possibly unintentionally – fly a drone in an airport approach or departure path.

But given another contemporary public threat to aircraft – commercially available hand-held laser pointers being shone into pilots’ eyes during take-off or final approach to land – an unsettling mentality exists out there. Use of lasers in this way is against the law, but incidents are on the increase.

So when a drone hits an aircraft, what will the result be?

Most are small and light – between one and 5kg. If one of these hits the aircraft wings, tail or forward fuselage it will cause damage but not make it impossible for the pilots to fly safely.

But if it hits the flightdeck windscreen or the engines the results could be serious. Exactly how serious we are not sure, because tests have not been carried out.

A drone-strike on an engine will probably cause its failure, and if it’s a heavier device it might smash the windscreen and injure or kill a pilot. Either of these events is very unlikely to be terminal for the aircraft, but they both could be. This would depend on the degree of direct damage and whether or not it has secondary effects.

Large-scale public drone use is still not with us, but it’s on the way. With greater use will come greater awareness among users as well as the public. That’s what the Civil Aviation Authority and Department for Transport are banking on – the public’s basic common sense.

Terrorists are unlikely to use drones against aircraft because there are more effective ways of attempting to disrupt commercial aviation.

But for those on the fringes of society – the kind who use powerful laser-pointers – dicing with risk can be attractive.

What the authorities have to decide is whether this risk is serious enough to require, for example, all drone users to register. Or some form of unique identifier like a transponder or GPS tracker to be fitted to all machines.

They’d rather not have to introduce expensive bureacracy to control the public use of devices that, used sensibly according to existing rules, are pretty much harmless.