Boeing 737: the beginning of the end.

It hasn’t surprised anyone in the industry to hear rumours – via the pages of the Wall Street Journal – that Boeing is working on the design of a new narrowbody jet, because it’s what everyone – including Boeing – knows the manufacturer should have done instead of launching the 737 Max.

The confidence in that statement is completely un-influenced by hindsight.

Now the Max has been purged of the ghastly design mistake that was MCAS (manoeuvring characteristics augmentation system), and Boeing has radically overhauled its corporate safety culture under a new leader – former Rockwell Collins engineer CEO Kelly Ortberg – the 737 series can once again trade on the lazy confidence that comes from the fact that – with all its faults and its antique technology – it’s a known quantity.

As a result the 737 is selling well, but nothing like as well as its competitor the Airbus A320 series.

The first 737-100 entered service in 1968, initially to fly the routes that the larger 727 series trijet was too big for. Its basic control technology was – and still is – just-post-war, except that in the latest versions the power-assisted cranks and pulleys are overlaid with electronic flight instrument systems and flight management computers to the extent that the pilots could almost believe the aircraft is fly-by-wire. They know, however, that they themselves are the flight envelope protection.

The industry needs a new-technology narrowbody competitor to the A320, and if Boeing doesn’t supply it, perhaps a development of China’s Comac C919, Russia’s Sukhoi Superjet 100, or a new product from Brazil’s Embraer will fill the gap.

Boeing’s first fly-by-wire airliner was its highly successful 777 widebody, which entered service in 1995 with virtually no birthing pains.

In 2011 it launched the 787 Dreamliner series, also highly commercially successful, but suffering from multiple early problems, some of them still being worked on.

Right now Boeing is struggling to re-launch the 777 as the 777X. The fact that it had a planned 2019 in-service date, but now its launch customer – Lufthansa – will not receive it until 2026, suggests how difficult a task bringing an entirely new narrowbody (the 797?) to service readiness may yet be.

The challenge is always to deliver a safe, trouble-free product, but the staggeringly advanced, fully-integrated electronic technology by which the aircraft and all its systems will be managed and controlled, plus the fact that there must be fallback systems that the pilots can access easily if it all goes wrong, mean its service entry will not be quick.

Look beyond this to the fact that the new systems will inevitably employ artificial intelligence, which makes passengers – and even engineers – nervous when it comes to managing safety-critical systems, and the size of the challenge becomes clear.

So the venerable 737 series will be with us for many years yet.

Air India suffers the first fatal crash involving a 787

Boeing’s long-range widebody 787 has been in service since 2013, and had some worrying technical problems in early service. Those, however, were corrected and it had been crash-free until now.

There has been very little information for investigators to work with since the Air India 787-8 crashed just after take-off from Ahmedabad today.

There are reports of an urgent Mayday call from the crew during the brief airborne period. The 787 appears to have reached a maximum height of about 600ft before descending, wings-level, in a nose-high attitude, to impact with buildings about 1.5nm from the runway’s end. An explosion followed, resulting from the large amount of fuel on board contacting hot engine parts when the crash breached the fuel tanks. The aircraft had been fuelled for the scheduled ten-hour flight to London Gatwick.

Powered by twin GE Aerospace GEnx engines, the 787-8 took off from Ahmedabad at 13:40 local time in good weather, carrying 242 passengers and crew. Initial reports from the site indicate that all on board died except for a single passenger who was thrown clear, and has survived. There are expected to be many casualties on the ground, but the numbers are not known at present.

Looking at a video of the last few seconds of the flight, the landing gear still remains down, the flaps look as if they are still at a take-off setting – but the video quality is so poor that cannot be stated with certainty – and the aircraft is in a steady descent which only ended in impact with buildings and the ground.

At this point after take-off, the gear would normally have been retracted and the aircraft would have been climbing rapidly. The steady descent actually witnessed in the video suggests the crew could not command sufficient power from the engines to keep the aircraft level, let alone to climb.

If that is true, what had happened to deprive the pilots of power from the engines? Had they suffered a multiple birdstrike that damaged both engines? No-one so far has reported a flock of birds in the departure path.

And failure of a single engine should not cause a crew to lose control of a modern airliner, even in the critical early climb phase. The video shows an aircraft that looks under control, but unable to climb.

Simultaneous engine failures for unconnected reasons simply do not happen, according to the entire history of aviation accidents. So if there was a failure of both, what could have caused it?

Frankly, we don’t know for certain in this case if engine power was the problem, but if you go looking for a potential cause of multiple engine failure, fuel contamination could do it. Again, however, history is against that potential cause in observed reality.

Could the pilots not demand the nose-up attitude they actually wanted because of some technical limitation? Well, that happened in the notorious 737 Max cases, but there is virtually no commonality in the way the 737 Series controls work and the manner in which the 787 Series operates.

So we have to wait for the investigators to report. These days, if the Indian investigators follow today’s recommended protocol, after about a month they will provide factual data of which they are certain, even if the final verdict is not yet clear. The aircraft’s “black boxes” – the cockpit voice recorder and flight data recorder – will provide data on what the aircraft actually did, and may throw some light on why it did it.

Meanwhile, be patient. This kind of accident is incredibly rare these days, and finding the truth behind it could not be more important.

Will the MH370 wreck be found this time?

If a new search of the southern Indian Ocean goes ahead as proposed, the expedition may clear up once and for all the most perplexing aviation mystery since the second world war: the fate of the missing Flight MH370, and all 239 people lost with it.

The majority of those on board the lost flight – which took off from Kuala Lumpur bound for Beijing more than ten years ago – were Malaysian or Chinese. Now Malaysian transport minister Anthony Loke has provisionally accepted a “no find, no fee” bid by Southampton, UK-based survey company Ocean Infinity, to search a new area of the remote southern Indian Ocean, where previously rejected data suggests the MH370 wreck could be resting on the sea bed.

Loke explained his rationale for a new search: “Our responsibility and obligation and commitment is to the next of kin…We hope [the search] this time will be positive, that the wreckage will be found and give closure to the families.”

Ocean Infinity vessels took part in a previous search near the planned fresh objective, but they were carried out under the direction of government agencies from Malaysia, China and Australia, and were unsuccessful. This time the company will be using independently supplied data from multiple expert sources, and it will consider alternative theories as to how the aircraft was directed in the last sector of its flight before it finally entered the ocean. This will take the search further south than Ocean Infinity’s vessels have scanned before.

On 8 March 2014, the Malaysia Airlines Boeing 777 took off from Kuala Lumpur on a scheduled flight to Beijing. Over the South China Sea, only 39 minutes into the flight, all radio communication with air traffic control was lost, and the aircraft’s data disappeared from ATC radar.

Military radar later revealed that, when it disappeared from ATC radar because the aircraft’s transponder had been switched off, MH370 almost did a U-turn and headed back across Malaysia, out into the northern Andaman Sea, and finally went out of radar range. What it did then has been the subject of endless speculation, but all plausible theories led to the south-eastern Indian Ocean, where the previous (unsuccessful) searches have taken place.

Since that time a few pieces of wreckage identified as part of the missing Boeing 777 have been found washed up on beaches around the Indian Ocean, thousands of miles from the aircraft’s flight planned route.

But the resting place of the wreckage and the remains of 239 people who had set off innocently on a commercial flight are, to this day, still undiscovered.

If the Malaysian government confirms its planned agreement with Ocean Infinity, the world may finally learn the fascinating truth about this mysterious flight.